Welcome to QUACK!

Week 2
7/2/2025
Nina, Sophie, and Victoria

Structure of the bootcamp

Session 1 (6/11) Session 2 (7/2) Session 3 (7/16) Session 4 (7/23)

Data cleaning and

. Data visualization Intro to stats with R
wrangling

Intro to R and RStudio

We will work with some of the same data throughout the bootcamp to get a feel
for the process of exploring data and getting it ready for analysis

Sessions build on each other and we will pick up where we left off in the last
session - you will get the most out of the bootcamp if you attend all four weeks!

UC Berkeley

Today’'s Agenda

e Warm-up activity
e Dataframes

e Packages

e Intro to Tidyverse

e Useful functions in Tidyverse

UC Berkeley

> W

Week 2 Warm-up - 10 minutes

Download this week’s materials from this link: https://tinyurl.com/quack-summer
Make a New R script. Save it to your computer. Title it “S2_warmup”
Add a comment with the date, a title, and your name

Create three different vectors:
a. Avector of your favorite numbers
b. Avector of your favorite people

c. Avector of your favorite booleans

Run the code and check that everything looks correct in the global environment.

Open the starter script for this week.

UC Berkeley

Dataframes are a convenient
way to view your data, and they
can be configured in a number of
different ways to best suit your
needs

But there are some
near-universal guidelines!

Multiple data types in one column
Multiple variables in a column (e.g., date + experimenter initials)
Info outside of the dataframe (highlights, comments, etc.)

Spaces in variable names

THAT’S A HUGE
VYRR UCBerkeley

Packages

Base R is powerful on its own, but sometimes you'll need some added
functionality

Packages are collections of functions that other people have written and
published for all to use

R comes with some packages pre-loaded, but some you need to
install/load yourself

Here's how:

: “ ., thiswillinstall the package and
>> 1nstall.packages (“packagename”) L4dittoR on your computer

this will load the package for

>> library (packagename) :
your current session

UC Berkeley

Tidyverse

e From their : “The tidyverse is an
opinionated collection of R packages
designed for data science. All packages
share an underlying design philosophy,
grammar, and data structures.”

e Each package has its own focus: reading
in data, reshaping data, visualizing data,
etc.

e You can install/load them all together
using the name “tidyverse” or individually

https://www.tidyverse.org/

%>%

Introducing: The Pipe Operator

UC Berkeley

And some useful tidyverse functions

select() for (you guessed it) selecting things like columns that you want to
include or drop from a dataframe

filter() for including/removing rows with particular values
distinct() for removing duplicate values

mutate() for changing or adding columns with particular values (and
much more)

summarize() for creating compact dataframes with summary statistics

group_by() for collapsing your data by particular variables (usually for the
purpose of summarizing)

UC Berkeley

And lastly, a cheat sheet!

https://rstudio.github.io/cheatsheets/html/data-transformation.html

dplyr functions work with pipes and expect tidy data. In tidy data:

'Y & *—»
| T *=» pipes
ey L]

Each variable isin

Each observation, or x|>f(y)
its own column

(y
case,isinitsownrow becomes f(x,y)

Summarize Cases

Apply summary functions to columns to create a new table of
summary statistics. Summary functions take vectors as input and
return one value (see back)

summary function

mun 8 summarize(.data, ...)
¥ Compute tal eofsummarles
micars [~ summanze|avg = meanimpg!

count(.data, ..., wt=NULL, sort= FALSE name=
mnm . ® NULL) Count number of rows in each p defined
-> by the variables in ... Also tally(), add_count(),
w add_tally().
mtcars |~ counticyl)

Group Cases

Use group_by(.data, ..., .add = FALSE, .drop = TRUE) to create a
"grouped” copy of a table grouped by columns in ... dplyr
functions will manipulate each "group” separately and combine
the results.

BB mtcers
> -

E
summa mean(mpg))

Use rowwise(.data, ...) to group data into individual rows. dplyr
functions will compute results for each row. Also apply functions
to list-columns, See tidyr cheat sheet for list-column workflow.

mmm 0 sl
-> > m o\ P> :
tatelfi -
[Jl— @ mutste(film_count=lengtl
ungroup(x, ...) Returns ungrouped copy of table.

g_micars <- mtcars |~ group_by(cyl)
ungroup(g_mtcars)

Manipulate Cases

EXTRACT CASES
Row functions return a subset of rows as a new table.

BEE WSS filter(.data, ..., .preserve = FALSE) Extract rows
that meet logical criteria.
mtcars | filterimpg > 20]

distinct(.data, ..., .keep_all = FALSE) Remove

EEE _ mmn
> rows with duplicate values.

WEE micars |- distinct{gear)
slice(.data, preserve = FALSE) Select rows
by position.

mtcars [~ slice{20:15)
NN mEE
slice_sample(.data, ..., n, prop, weight_by =
NULL, replace = FALSE) Randomly select rows.
Use n to select a number of rows and prop to
select a fraction of rows.
micars |~ slice_sample(n =5, replace = TRUE
slice_min(.data, order_by, ..., n, prop,
with_ties= TRUE) and slice, max() Select rows
with the lowest and highest values.
mtcars |~ slice_min(mpg, prop =0.25)

slice_head(.data, ..., n, prop) and slice_tail()
Select the first or last rows
micars [~ slice_head(n =

HEEE

Logical and boolean operators to use with filter()
is.naf) %in% |
lis.na() ! &
See ?base::Logic and 2Comparison for help.

= < <= xorf{)

= > >=

ARRANGE CASES

arrange(.data, ..., .by_group = FALSE) Order
rows by values of a column or columns (low to
high), use with desc() to order from high to low.

»EEn

mmm Micars |- arrange(mpg
mtcars |~ arrange(descimpg])
ADD CASES
W, mmw add_row(.data, ..., .before = NULL, .after =NULL)

Add one or more rows to a table.
cars [add_row(speed =1, dist = 1]

Summary Functions
TO USE WITH SUMMARIZE ()

summarize() applies summary functions to
columns to create a new table. Summary
functions take vectors as input and return single
values as output.

summary function

COUNT
n() - number of values/rows
n_distinct() - # of uniques
sum(!is.na()) - # of non-NAs

POSITION

mean() - mean, also mean(!is.na())
median() - median

LOGICAL

mean() - proportion of TRUEs
sum() - # of TRUEs

ORDER
first() - first value
last() - last value
nth() - value in nth location of vector

RANK
quantile() - nth quantile
min() - minimum value
max() - maximum value

SPREAD
IQR() - Inter-Quartile Range
mad() - median absolute deviation
sd() - standard deviation
var() - variance

Row Names

Tidy data does not use rownames, which store a
variable outside of the columns. To work with the
rownames, first move them into a column.

|=::rownames_to_column()
Move row names into col.
Wi “EEE a<- mtears |-
rownames_to_columnivar="C"
1 00le column_to_rownames()

+ Move col into row name:
& |~ column_to_rownamesiy

ar="C"

Also © has_rownames() and
©2hi= remove_rownames().

Combine Tables

COMBINE VARIABLES

X y

noa gEo [a]e [clelelc]

P Wk o atiats

buz BuE — buzhuE

v - cvs@mE
bind_cols(..., .name_repair) Returns tables

placed side by side as a single table, Column
lengths must be equal. Columns will NOT be
matched by id (to do that look at Relational Data
below), so be sure to check that both tables are
ordered the way you want before binding.

RELATIONAL DATA

Use a "Mutating Join" to join one table to
columns from another, matching values with the
rows that they correspond to. Each join retains a
different combination of values from the tables.

nnaEn NULL, copy = FALSE,
. : keep = FALSE,
.. im% na_matches="na") Join matching

values fromy tox.

nglltJoln(x y,by NULL, copy = FALSE,

suffix=c("x’ keep:FALSE,
SR Na_t matches—"n)Jmn matching
values fromx toy.
Lclp]
aias
buz

only rows with matches.

full_join(x, b7 by =NULL, cop —FALSE
Yo 2

na
values, all rows.

COLUMN MATCHING FOR JOINS

Use by =¢("col1", "col2", ...) to
+ % specify one or more common
muw columns to match on.

left_joinfx, y, by ="A"

AT T Use a named vector, by =c("col1" =
s ftd® mcol2"), to match on columns that
« w3 havedifferent namesin each table. j

Ly, by=c("C"="D"

left_join(x

give to unmatched columns that

% Use suffix to specify the suffix to
o have the same name in both tables.

COMBINE CASES
st
X sue
nnR
4 y ius: bind_rows(...,.id=NULL)

Returns tables one on top of the

[EOEE other as a single table. Set.id to
X et acolumnname to add acolumn
v ews ofthe original table names (as
v dwa pictured).

Use a "Filtering Join" to filter one table against
the rows of another.

X y

jalalc) Als]o]

.t REE

buaz bBua -

ev s 4w
MnE semi_join(x, y, by = NULL, copy = FALSE,
B : Lo na_matches = "na") Return rows of x

that have a match iny. Use to see what
will be included in a join.

anti_join(x, y, by = NULL, copy = FALSE,
..., Na_matches = "na") Return rows of x
that do not have a match in y. Use to see
what will not be included in a join.

Use a "Nest Join" to inner join one table to
another into a nested data frame.

"ﬂﬂ- nest_join(x, y, by =NULL, copy =

s FALSE, keep = FALSE, name =

< v s <essiernz» NULL, ...) Join data, nesting
matches from y in a single new
data frame column.

SET OPERATIONS

mnE intersect(x, y, ...) N

= v Rows thatappearin bothxandy.

non setdiff(x,y,...) &

» ++ Rowsthat appearinxbut noty. s

buz

noE union(x,y,...)

« ++ Rowsthatappearinxory,

& vz duplicates removed). union_all()

cus 4 2

dwa retainsduplicates.

Use setequal() to test whether two data sets

contail

in the exact same rows (in any order).

https://rstudio.github.io/cheatsheets/html/data-transformation.html

Time to get started in R! E II . &
] i ;

e @Go to https://tinyurl.com/quack-summer
e Download and unzip the course materials
e You will see many files:

o Two R Markdown (.rmd) files
o A.csvfile

o Two PDF files - slides and a practice doc
o Some other folders - ignore these for now

e Open the R Markdown file marked “starter_code” - this is where we will
code together for the first part of the session

e The .csv file contains the data we will be working with

e The practice PDF contains practice exercises for you to do during the

second part of the session UC Berkeley

