
Week 3: Logic & Data Cleaning

1

Elena & Willa
8/25/2020

Today’s agenda

1. Check-in + any questions about the program?

2. Warm-up: Review data practice from last week

3. Logic operators + if/else

4. Subsetting vectors

5. Subsetting data frames

6. Data cleaning

2

Warm-up: Review data practice from last week

3

Getting started with logic

Let’s imagine we are at the candy store.

I want to buy some delicious treats for all the quack participants.

Without naming the exact candy, describe two different kinds of candy you
might want.

Example: I want something that has chocolate and caramel, or I want something
that is candy coated and colorful.

Type into the chat: What would you want?

4

Getting started with logic

I tell the clerk, “I want something that has chocolate and caramel, or I want
something that is candy coated and colorful. If you don’t have either of those,
I’ll have something sour.”

He returns with a bag of twizzlers.

I tell him, “No, that is not what I want.”

Then he returns with a bag of skittles.

I say, “Yes, that is what I want!”

5

Questions:
1) If he didn’t have Twix or Skittles (or

anything that met my first two
conditions), and then he brought me
sour patch kids, would I purchase them?

2) What are some of the keywords that are
important in this story and to getting me
the candy I want?

Key words

And, or

Is (equal to), is not (equal to)

If, if/else

Yes/no

Can also imagine: More/greater than, less than

While (e.g., “While something isn’t what I want, keep bringing me another one”)

6

Equal and not equal

Yes or no: Does 4 + 5 = 9? Does 4 + 5 = 10? Does 4 + 5 not equal 10?

In R, we use == to express ‘equals’, and != to express ‘not equals’.

Let’s try it out in R:
1. Type 4 + 5 == 9 into your R console and see what happens!

○ ‘Yes’ is the same as TRUE, a boolean
2. What do you think will happen when you type 4 + 5 == 10? Now try it out.
3. What if you type 4 + 5 = 9? What happens?
4. Guess what will happen when you type 4 + 5 != 10. Now try it out.
5. Guess what will happen when you type 4 + 5 != 9. Now try it out.

7

Fun fact: The exclamation point is called a
‘bang’! So != can also be read as ‘bang equals’.

You can also test equality of strings

Try it out:

1. Test if “hello” is equal to “hello”
2. Test if “hello” is equal to “hella”
3. Test whether “hello” is not equal to “world”

8

Greater than or less than

> Greater than >= Greater than or equal to

< Less than <= Less than or equal to

On your own, predict what will happen then try it out in R:

9

1. 15 > 5
2. 15 >= 5
3. 15 >=15
4. 15 >= 15

5. 2 <= 4
6. 2 < 2
7. 2 < 3
8. 2 <= 2

9. “a” > “b”
10. “hello” < “world”
11. “hello” < “hella”
12. “Hello” <= “hello”

13. “hello” < “hello”
14. Is “aa” > or < “ab”?

Try it out.

And, or

Think back: I only want my candy if it has chocolate AND caramel

Alternatively, Willa might say she would eat a candy that has chocolate OR
caramel.

Would she be happy with a candy that has both?

10

Most likely, yes!

And, or

In R, we use & to express ‘and’ and | to express ‘or’

Our candy example in pseudocode:
● Elena: candyBase == chocolate & candyContains == caramel
● Willa: candyBase == chocolate | candyContains == caramel

11

And TRUE FALSE

TRUE TRUE FALSE

FALSE FALSE FALSE

Left-hand
side

Right-hand side

Or TRUE FALSE

TRUE TRUE TRUE

FALSE TRUE FALSE

Left-hand
side

Right-hand side

And, or in R

Predict what will happen then try it out in R:

x = 1, y = 2

1. x + y == 3 | x * y == 3
2. x + y == 3 & x * y == 3

Now, x = 2, y = 2

3. x + y == 4 | x * y == 4
4. x + y == 4 & x * y == 4

12

%in% operator

This operator let’s us know whether an element is in a vector, which is very
useful! There are many uses for it, here is one.

What if I want to check whether a child’s grade is 3, 5 or 7. For whatever
reason, I only want these grades, not 4 or 6, so I can’t just say grade > 2.

How could I write this?

grade == 3 | grade == 5 | grade == 7

R gives us a nicer way of doing this: grade %in% c(3, 5, 7)

13

Try it in R! Do it both ways (| and
%in%), first with grade <- 3 .

Then try with grade <- 4 .
What if grade <- 5?

%in% operator

This operator also gives us more flexibility to use a variable in case what we
want changes.

grade == 3 | grade == 5 | grade == 7

Compared to:

possibleGrades <- c(3, 5, 7)

grade %in% possibleGrades

14

If/else

We use conditionals every day. Examples:
● Deciding what to buy at the grocery store - “Get me those TJ’s cookies I love if they have them. If

not, just get me some bananas.”
● Planning what we do and when - “If I finish debugging this script I can have a beer tonight”

And we use them in our code, too. Let’s write this in pseudocode: If the store has a
chocolate AND caramel candy, I’ll buy it! If not, I won’t buy anything.

if(candyBase == chocolate & candyContains == caramel): buy candy
else: don’t buy candy

15

If/else

Syantax for if/else in R:

if(condition) {

...do something…

} else {

... do something different...

}

16

You can add as many conditions
as you want.

if(condition1) {

...do something…

} else if (condition2) {

... do something different...

} else {

... do something different...

}

If/else

Predict what will print, then try it out in R:

donutsSold <- 25

if (donutsSold > 20) {

 print('You sold a lot!')

} else {

 print('Not enough for today')

}

17

What if donutsSold <- 20?

What if donutsSold <- 5?

If/else
possibleGrades <- c(1, 3, 5, 7, 9, 11)

if (grade %in% possibleGrades) {

 gradeType <- “odd”

} else {

 gradeType <- “even”

}

print(gradeType)

18

1. Assign grade a value that will
make this code snippet print
“even” at the end.

2. Now assign a value that will
make it print “odd”

Remember, R is vectorized!

Vectorized means that operations occur in parallel in certain R objects. This allows you to
write code that is efficient, concise, and easier to read than in non-vectorized languages.

Think back to the first week… what will t equal? And z ?

x <- 1:4
y <- 6:9

t <- x + 5
z <- x + y

19

That’s right, R operates on each element. It knows that when you use the
operator ‘+’ you are saying add that number to each element in the vector.
In the case of z, it adds pairwise.

So what if we use the operators on vectors instead of
individual numbers and characters?
x <- 1:4 # --> c(1, 2, 3, 4)
y <- 6:9 # --> c(6, 7, 8, 9)

20

x > 2
FALSE FALSE TRUE TRUE

x >= 2
FALSE TRUE TRUE TRUE

y == 8
FALSE FALSE TRUE FALSE

x == 8
FALSE FALSE FALSE FALSE

x > 1 & x < 4
FALSE TRUE TRUE FALSE

x != 3 | x <= 2
TRUE TRUE FALSE TRUE

Important: These calls below are returning
vectors of logicals! Try saving one!

Logical Indexing: “Subsetting” vectors

So we have the vector y <- 6:9. What if I only want the numbers in x that
are greater than 7?

Remember, we can index using bracket notation: y[1] gives the first element

We are about to do something super cool… drumroll please…

We can use our logic statements inside our bracket notation to get out (keep)
the elements that we want!!!

Try this out in R: y[y > 7]

21

Let’s break this down to make sure we understand

First, it is important to note: y[1] is referring to the index, while
y[y > 7] is referring to the elements inside of s that meet a criterium.

elementsToKeep <- y > 7 # Returns a logical vector
newY <- y[elementsToKeep]

22

Index 1 2 3 4

y <- c(6 7 8 9)

Let’s break this down to make sure we understand

elementsToKeep <- y > 7 # Returns a logical vector
newY <- y[elementsToKeep]

Notice that this returns ONLY the elements at the indexes that are TRUE!
In this way, it is works “element-wise” or “vectorized”
(Note: Don’t worry about understanding this too deeply! We are looking under the hood. But should help us!)

23

Index 1 2 3 4

y <- c(6 7 8 9)

<- y > 7 FALSE FALSE TRUE TRUEelementsToKeep

Another useful resource: https://bookdown.org/ndphillips/YaRrr/logical-indexing.html

A practical example: checking for missing values

is.na() is a vectorized function that checks whether it is NA, returning TRUE or FALSE;
can take value or vector

is.na(5)

is.na(NA)

is.na(x)

is.na(c(5, 7, NA, 9, 6))

!is.na(c(5, 7, NA, 9, 6))

24

A practical example: checking for missing values

Here is a vector of kids’ ages, one of the columns in our data frame. Our goal
is to get rid of the NAs, because we can’t do our analyses with missing data.

age <- c(5, 10, NA, 6, 9, NA, 8)

is.na(age)

!is.na(age) # We want to keep the values that are NOT NA

age[!is.na(age)]

25

Now, let’s do this with a whole data frame.

26

subjid age gender bilingual

1 5 m 0

2 10 m 1

3 NA f 0

4 6 m 1

5 9 other 0

6 NA f 1

7 8 NA 0

Remember, indexes of the columns are the row
numbers!

27

Index (Row) 1 2 3 4 5 6 7

Vector
names

(i.e.,
cols)

subjid <- 1 2 3 4 5 6 7

age <- 5 10 NA 6 9 NA 8

gender <- m m f m other f N

bilingual <- 0 1 0 1 0 1 0

Remember, indexes of the columns are the row
numbers!

28

Index (Row) 1 2 3 4 5 6 7

Vector
names

(i.e.,
cols)

subjid <- 1 2 3 4 5 6 7

age <- 5 10 NA 6 9 NA 8

gender <- m m f m other f Na

bilingual <- 0 1 0 1 0 1 0

!is.na(df$age) TRUE TRUE FALSE TRUE TRUE FALSE TRUE

df[!is.na(df$age),] # Keeps all indices (i.e., rows) that are TRUE!

