
Week5_key.R
willav

2021-09-29

Data visualization with ggplot
Willa & Elena
9/28/21
library(tidyverse)

Registered S3 methods overwritten by 'ggplot2':
method from
[.quosures rlang
c.quosures rlang
print.quosures rlang

Registered S3 method overwritten by 'rvest':
method from
read_xml.response xml2

-- Attaching packages -------------------- tidyverse 1.2.1 --

v ggplot2 3.1.1 v purrr 0.3.2
v tibble 3.0.3 v dplyr 1.0.2
v tidyr 1.1.2 v stringr 1.4.0
v readr 1.3.1 v forcats 0.4.0

Warning: package 'tibble' was built under R version 3.6.2

Warning: package 'tidyr' was built under R version 3.6.2

Warning: package 'dplyr' was built under R version 3.6.2

-- Conflicts ----------------------- tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
library(tidylog)

Warning: package 'tidylog' was built under R version 3.6.2

##
Attaching package: 'tidylog'

The following objects are masked from 'package:dplyr':
##
add_count, add_tally, anti_join, count, distinct,
distinct_all, distinct_at, distinct_if, filter, filter_all,
filter_at, filter_if, full_join, group_by, group_by_all,
group_by_at, group_by_if, inner_join, left_join, mutate,
mutate_all, mutate_at, mutate_if, relocate, rename,
rename_all, rename_at, rename_if, rename_with, right_join,
sample_frac, sample_n, select, select_all, select_at,
select_if, semi_join, slice, slice_head, slice_max, slice_min,
slice_sample, slice_tail, summarise, summarise_all,
summarise_at, summarise_if, summarize, summarize_all,
summarize_at, summarize_if, tally, top_frac, top_n, transmute,

1

transmute_all, transmute_at, transmute_if, ungroup

The following objects are masked from 'package:tidyr':
##
drop_na, fill, gather, pivot_longer, pivot_wider, replace_na,
spread, uncount

The following object is masked from 'package:stats':
##
filter
############### #### Warm-up #### ##################
From the practice questions last week:

1. Load in world-happiness_2020.csv (what we worked with last week)

happiness <- read.csv("../data/world-happiness_2020.csv")

2. Pick two variables and summarize them in a new data frame. Get the mean,
median, and sd.

summary1 <- happiness %>%
summarize(ladder.mean = mean(Ladder_score, na.rm = TRUE),

ladder.med = median(Ladder_score, na.rm = TRUE),
ladder.sd = sd(Ladder_score, na.rm = TRUE),
gen.mean = mean(Generosity, na.rm = TRUE),
gen.med = median(Generosity, na.rm = TRUE),
gen.sd = sd(Generosity, na.rm = TRUE))

summarize: now one row and 6 columns, ungrouped
mean(c(1, 2, 3, NA, 5), na.rm = TRUE)

3. In another new data frame, get the mean, median, sd for these variables by
region.

summary2 <- happiness %>%
group_by(Regional_indicator) %>%
summarize(ladder.mean = mean(Ladder_score, na.rm = TRUE),

ladder.med = median(Ladder_score, na.rm = TRUE),
ladder.sd = sd(Ladder_score, na.rm = TRUE),
gen.mean = mean(Generosity, na.rm = TRUE),
gen.med = median(Generosity, na.rm = TRUE),
gen.sd = sd(Generosity, na.rm = TRUE)) %>%

ungroup()

group_by: one grouping variable (Regional_indicator)

summarize: now 10 rows and 7 columns, ungrouped

ungroup: no grouping variables
4. In a third new data frame, get the mean, median, sd for these variables by
region and population category.

summary3 <- happiness %>%
group_by(Regional_indicator, country_size) %>%
summarize(ladder.mean = mean(Ladder_score, na.rm = TRUE),

2

ladder.med = median(Ladder_score, na.rm = TRUE),
ladder.sd = sd(Ladder_score, na.rm = TRUE),
gen.mean = mean(Generosity, na.rm = TRUE),
gen.med = median(Generosity, na.rm = TRUE),
gen.sd = sd(Generosity, na.rm = TRUE)) %>%

ungroup()

group_by: 2 grouping variables (Regional_indicator, country_size)

summarize: now 22 rows and 8 columns, one group variable remaining (Regional_indicator)

ungroup: no grouping variables
############### #### Data Viz demo #### ##################

Read in our data

penguins <- read.csv('../data/penguins_clean.csv')

Explore our data with some simple plots

1. Look at body mass by species

Set up our ggplot and define our variables.
aes = asthetic mapping. This tells ggplot how to map your variables to the plot.

ggplot(penguins, aes(x = species, y = body_mass_g)) +

represent the data to a column object.
geom = geometric object. It tells ggplot the geometric
representation to use for your data.

geom_col()

3

0

50000

100000

150000

Adelie Chinstrap Gentoo

species

bo
dy

_m
as

s_
g

In this case, bar charts aren't the best way to look at data
because it doesn't tell us much about individual data points
or the distribution of data.

Let's change the geometric representation of our data and use a boxplot.

ggplot(penguins, aes(x = species, y = body_mass_g)) +

represent the data to a boxplot object.
geom_boxplot()

4

3000

4000

5000

6000

Adelie Chinstrap Gentoo

species

bo
dy

_m
as

s_
g

This gives us some more descriptive stats about the data
but we still don't have a good feel for what the distribution
of the data points look like.

Lets use a violin plot to visualize the data.
Violin plots are a great way to visualize the distribution of your data.

ggplot(penguins, aes(x = species, y = body_mass_g)) +

Map the data to a violin plot. Options stop the ends from being trimmed.
geom_violin(trim = FALSE) +

Add a boxplot on top. Options make the boxplot small.
geom_boxplot(width = 0.1)

5

3000

4000

5000

6000

7000

Adelie Chinstrap Gentoo

species

bo
dy

_m
as

s_
g

Notice that the species are ordered alphabetically.
We could change this by creating a factor.
(eg. factor(species, levels = c("Chinstrap", "Adelie", "Gentoo"))

Now lets see if there are differences between species.
We can use "fill" as an additional aesthetic mapping.
Fill = filled in color
Color = colored outline.
For some shapes (eg. lines, points) they only have a color attribute.
For other shapes (eg. boxes) they have both color and fill.

ggplot(penguins, aes(x = species, y = body_mass_g, fill = species)) +
geom_violin(trim = FALSE) +

We can further split the plot by sex
facet_wrap(~ sex) +

Now that we are happy with our plot choice, lets customize it further

change axis labels
xlab("Species") +
ylab("Body mass (g)") +

change the y axis scale to start at 2 and end at 7000
ylim(2000, 7000) +

6

Change the color scheme.
Color scales and palettes allow you to change the color scheme
for mapping variable, in this case, species.
There are a few ways to do this. Choose ONE

i.Some color names are built in
scale_fill_manual(values = c("dark gray", "dark orange", " dark green")) +
or if you were using "color" instead of fill

scale_color_manual(values = c("dark gray", "dark orange", " dark green"))

##ii.We can give it hex values
scale_fill_manual(values=c ("#999999", "#E69F00"))

iii. We can use color palettes
scale_fill_brewer(palette ="Dark2")

change the overall theme
Theme = overall look of the plot. Including, grid lines, font, font size, legend etc.

Some themes are built in and you can apply them in one command
theme_bw()

female male

Adelie Chinstrap Gentoo Adelie Chinstrap Gentoo

2000

3000

4000

5000

6000

7000

Species

B
od

y
m

as
s

(g
)

species

Adelie

Chinstrap

Gentoo

OR
theme_classic()

You can also create your own custom theme and change any features of the plot using theme()

7

NOTE. Above we used color to represent variables. We can also just change the color of individual objects for aesthetic reasons. To do this you can modify the color of a specific geom.
eg.

ggplot(penguins, aes(x = species, y = body_mass_g)) +
geom_violin(trim = FALSE, fill = "dark blue")

3000

4000

5000

6000

7000

Adelie Chinstrap Gentoo

species

bo
dy

_m
as

s_
g

6. Exploring continuous variables with scatter plots. We can explore the relationships between two continuous values with scatter plots.

create a ggplot object with body mass and bill depth

Set up our ggplot
ggplot(penguins, aes(body_mass_g, bill_depth_mm)) +

Represent the data as points
geom_point() +

Add a line. Option method = 'lm' gives you a linear regression line.
geom_smooth(method = 'lm')

8

17.5

20.0

22.5

3000 4000 5000 6000

body_mass_g

bi
ll_

de
pt

h_
m

m

There are two clear groups here. Given what we saw already about sex differences let's see if they group by sex?
Note: we will use "color" instead of "fill" here
because geom_point() only has a "color" attribute.
ggplot(penguins, aes(body_mass_g, bill_depth_mm, color = sex)) +

geom_point() +
geom_smooth(method = 'lm')

9

15.0

17.5

20.0

22.5

3000 4000 5000 6000

body_mass_g

bi
ll_

de
pt

h_
m

m

sex

female

male

There are sex differences but these don't explain the grouping.
Lets try grouping by species instead.
ggplot(penguins, aes(body_mass_g, bill_depth_mm, color = species)) +

geom_point() +
geom_smooth(method = 'lm')

10

17.5

20.0

22.5

3000 4000 5000 6000

body_mass_g

bi
ll_

de
pt

h_
m

m species

Adelie

Chinstrap

Gentoo

We see that this split in the data is due to species and
by accounting for species the relationship between bill depth
and body mass becomes postive whereas before it was negative.
This shows the value of looking at your data before running analyses.

########################## ##### Practice Key ##### #######################################

1. Load in the Happiness data

happiness <- read.csv('../data/world-happiness_2020.csv')

2. Create a violin plot relating happiness levels to social support. Use ladder_score_cat as the x-value and Social_support as the y-value.

create ggplot object and map variables
ggplot(happiness, aes(ladder_score_cat, Social_support)) +

violin plot
geom_violin(trim = FALSE)

11

0.3

0.6

0.9

above average below average

ladder_score_cat

S
oc

ia
l_

su
pp

or
t

3. Is this relationship between social support and happiness the same for all country sizes? (hint: Remember the categorical country_size variable you created last time).

ggplot(happiness, aes(ladder_score_cat, Social_support, fill = country_size)) +
violin plot
geom_violin(trim = FALSE)

12

0.3

0.6

0.9

above average below average

ladder_score_cat

S
oc

ia
l_

su
pp

or
t

country_size

large

medium

small

Another option is to split by country size.
ggplot(happiness, aes(ladder_score_cat, Social_support)) +

violin plot
geom_violin(trim = FALSE) +

split plot by country size
facet_wrap(~ country_size)

13

large medium small

above average below average above average below average above average below average

0.3

0.6

0.9

ladder_score_cat

S
oc

ia
l_

su
pp

or
t

4. Recreate a violin plot of happiness by country size.
make country size a factor and re-order the levels.
happiness <- happiness %>%

mutate(country_size = factor(country_size,
levels = c("small", "medium", "large")))

mutate: changed 0 values (0%) of 'country_size' (0 new NA)
set up variables to plot
plot = ggplot(happiness, aes(country_size, Ladder_score,

fill = country_size)) +

add a violin
geom_violin(trim = FALSE) +

add a boxplot
geom_boxplot(width = 0.1) +

Change axis labels

xlab("Country Size") +
ylab("Ladder Score") +

Change background color

theme_classic()

5. customize the plot

14

plot +
change y-axis limits
ylim(0 , 10) +

Change the color scheme to a color of your choosing
scale_fill_brewer(palette ="Dark2") +

remove the legend
theme(legend.position = 'none')

0.0

2.5

5.0

7.5

10.0

small medium large

Country Size

La
dd

er
 S

co
re

6. Recreate the scatter plot
ggplot(happiness, aes(Freedom_to_make_life_choices, Social_support)) +

scatter plot
geom_point(color = "dark green", shape = "diamond") +
geom_smooth(method = 'lm', color = 'dark green') +

change axis labels

xlab("Freedom to make life choices") +
ylab("Social Support") +

set theme
theme_classic()

15

0.4

0.6

0.8

1.0

0.4 0.6 0.8 1.0

Freedom to make life choices

S
oc

ia
l S

up
po

rt

6 ii) try se = FALSE
ggplot(happiness, aes(Freedom_to_make_life_choices, Social_support)) +

scatter plot
geom_point(color = "dark green", shape = "diamond") +
geom_smooth(method = 'lm', color = 'dark green', se = FALSE)

16

0.4

0.6

0.8

1.0

0.4 0.6 0.8 1.0

Freedom_to_make_life_choices

S
oc

ia
l_

su
pp

or
t

se = FALSE removes the standard error from the regression line.

17

