Week 8: Random variables Sampling Elena & Willa 10/19/2020

Today's agenda

- Random variables and distributions
- Sampling distributions

So far, we have focused on directly assigning values to variables.

num <- 1

df <- penguins.csv

names <- c("Willa", "Elena", "Roya")</pre>

So far, we have focused on directly assigning values to variables.

```
num <- 1
df <- penguins.csv
names <- c("Willa", "Elena", "Roya")</pre>
```

What is a random variable?

"A variable that takes on different numerical values as a result of a random experiment (eg. flipping a coin) or random measurements (eg. randomly sampling height in the population)."

"A variable that takes on different numerical values as a result of a random experiment (eg. flipping a coin) or random measurements (eg. randomly sampling height in the population)."

Randomly tossing a coin

Randomly sampling height in a population

A random variable has a set of possible values, but the outcome each time is unknown.

"A variable that takes on different numerical values as a result of a random experiment (eg. flipping a coin) or random measurements (eg. randomly sampling height in the population).

Randomly tossing a coin

Randomly sampling height in a population

A random variable has a set of possible values, but the outcome each time is unknown. As scientists, we spend our careers collecting measurements from random variables.

"A variable that takes on different numerical values as a result of a random experiment (eg. flipping a coin) or random measurements (eg. randomly sampling height in the population).

Randomly tossing a coin

Randomly sampling height in a population

A random variable has a set of possible values, but the outcome each time is unknown.

As scientists, we spend our careers collecting measurements from random variables.

- Characterizing the distribution of the variable
- Statistical inference
- Predicting other outcomes from their values
- Comparing distributions amongst populations

"A variable that takes on different numerical values as a result of a random experiment (eg. flipping a coin) or random measurements (eg. randomly sampling height in the population).

Randomly tossing a coin

Randomly sampling height in a population

A random variable has a set of possible values, but the outcome each time is unknown.

As scientists, we spend our careers collecting measurements from random variables.

- Characterizing the distribution of the variable
- Statistical inference
- Predicting other outcomes from their values
- Comparing distributions amongst populations

Understanding the definition & properties of random variables becomes important when you are doing data analysis.

- Set of possible values
- Each value has a probability of occurring.

Define our variable with a function (eg. normally distributed).

- Set of possible values
- Each value has a probability of occurring.

Define our variable with a function (eg. normally distributed).

- Set of possible values
- Each value has a probability of occurring.

Define our variable with a function (eg. normally distributed).

- Set of possible values
- Each value has a probability of occurring.

As scientists we often collect measurements without knowing the underlying distribution.

Define our variable with a function (eg. normally distributed).

- Set of possible values
- Each value has a probability of occurring.

As scientists we often collect measurements without knowing the underlying distribution.

But we know each observation is one value of a range of possible outcomes.

Define our variable with a function (eg. normally distributed).

- Set of possible values
- Each value has a probability of occurring.

As scientists we often collect measurements without knowing the underlying distribution.

But we know each observation is one value of a range of possible outcomes.

We can represent the variable as a collection of our measured outcomes and then make inferences about the distribution.

Thinking about your data this way can help make a lot of statistical techniques more intuitive!

Define our variable with a function (eg. normally distributed).

- Set of possible values
- Each value has a probability of occurring.

As scientists we often collect measurements without knowing the underlying distribution.

But we know each observation is one value of a range of possible outcomes.

We can represent the variable as a collection of our measured outcomes and then make inferences about the distribution.

Simulating observations from a random variable

In R, we can simulate this data collection process and get observations for a random variable from a distribution.

Simulating observations from a random variable

In R, we can simulate this data collection process and get observations for a random variable from a distribution.

In the real world we might not know the distribution, but in R we will define our random variable with a range of values and a probability function that we believe makes sense.

Simulating observations from a random variable

In R, we can simulate this data collection process and get observations for a random variable from a distribution.

In the real world we might not know the distribution, but in R we will define our random variable with a range of values and a probability function that we believe makes sense.

Then we will look at the range of values we can get from this variable.

